
Phishing Email Detector AI Agent
Pricing
Pay per event

Phishing Email Detector AI Agent
The Phishing Email Detector AI Agent is a sophisticated tool designed to help users identify and analyze potential phishing attempts in received emails. With this comprehensive solution, users can quickly determine if an email poses a security threat through multi-layered analysis
5.0 (2)
Pricing
Pay per event
2
Monthly users
1
Runs succeeded
>99%
Last modified
a month ago
You can access the Phishing Email Detector AI Agent programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "lfloaX47dSo5bB14G"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/web.harvester~phishing-email-detector-ai-agent/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-web.harvester-phishing-email-detector-ai-agent",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/web.harvester~phishing-email-detector-ai-agent/runs": {
50 "post": {
51 "operationId": "runs-sync-web.harvester-phishing-email-detector-ai-agent",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/web.harvester~phishing-email-detector-ai-agent/run-sync": {
93 "post": {
94 "operationId": "run-sync-web.harvester-phishing-email-detector-ai-agent",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "email",
135 "subject",
136 "content",
137 "modelName"
138 ],
139 "properties": {
140 "email": {
141 "title": "Sender's email",
142 "type": "string",
143 "description": "The email address of the sender to analyze for reputation and trustworthiness"
144 },
145 "subject": {
146 "title": "Email Subject",
147 "type": "string",
148 "description": "The subject line of the received email (analyzed for phishing indicators)"
149 },
150 "content": {
151 "title": "Email Content",
152 "type": "string",
153 "description": "The full content/body of the received email to analyze for phishing patterns"
154 },
155 "headers": {
156 "title": "Email Headers",
157 "type": "string",
158 "description": "Optional: Raw email headers for authentication analysis (SPF, DKIM, DMARC)"
159 },
160 "modelName": {
161 "title": "AI Model",
162 "enum": [
163 "gpt-4o",
164 "gpt-4o-mini"
165 ],
166 "type": "string",
167 "description": "The OpenAI model to use for analysis. GPT-4o provides the most accurate results but is slower, while GPT-4o-mini is faster but slightly less accurate.",
168 "default": "gpt-4o"
169 },
170 "emailsToAlert": {
171 "title": "Emails addresses to alert",
172 "uniqueItems": true,
173 "type": "array",
174 "description": "Optional: Email addresses to send alerts to when a phishing email is detected",
175 "items": {
176 "type": "string"
177 }
178 }
179 }
180 },
181 "runsResponseSchema": {
182 "type": "object",
183 "properties": {
184 "data": {
185 "type": "object",
186 "properties": {
187 "id": {
188 "type": "string"
189 },
190 "actId": {
191 "type": "string"
192 },
193 "userId": {
194 "type": "string"
195 },
196 "startedAt": {
197 "type": "string",
198 "format": "date-time",
199 "example": "2025-01-08T00:00:00.000Z"
200 },
201 "finishedAt": {
202 "type": "string",
203 "format": "date-time",
204 "example": "2025-01-08T00:00:00.000Z"
205 },
206 "status": {
207 "type": "string",
208 "example": "READY"
209 },
210 "meta": {
211 "type": "object",
212 "properties": {
213 "origin": {
214 "type": "string",
215 "example": "API"
216 },
217 "userAgent": {
218 "type": "string"
219 }
220 }
221 },
222 "stats": {
223 "type": "object",
224 "properties": {
225 "inputBodyLen": {
226 "type": "integer",
227 "example": 2000
228 },
229 "rebootCount": {
230 "type": "integer",
231 "example": 0
232 },
233 "restartCount": {
234 "type": "integer",
235 "example": 0
236 },
237 "resurrectCount": {
238 "type": "integer",
239 "example": 0
240 },
241 "computeUnits": {
242 "type": "integer",
243 "example": 0
244 }
245 }
246 },
247 "options": {
248 "type": "object",
249 "properties": {
250 "build": {
251 "type": "string",
252 "example": "latest"
253 },
254 "timeoutSecs": {
255 "type": "integer",
256 "example": 300
257 },
258 "memoryMbytes": {
259 "type": "integer",
260 "example": 1024
261 },
262 "diskMbytes": {
263 "type": "integer",
264 "example": 2048
265 }
266 }
267 },
268 "buildId": {
269 "type": "string"
270 },
271 "defaultKeyValueStoreId": {
272 "type": "string"
273 },
274 "defaultDatasetId": {
275 "type": "string"
276 },
277 "defaultRequestQueueId": {
278 "type": "string"
279 },
280 "buildNumber": {
281 "type": "string",
282 "example": "1.0.0"
283 },
284 "containerUrl": {
285 "type": "string"
286 },
287 "usage": {
288 "type": "object",
289 "properties": {
290 "ACTOR_COMPUTE_UNITS": {
291 "type": "integer",
292 "example": 0
293 },
294 "DATASET_READS": {
295 "type": "integer",
296 "example": 0
297 },
298 "DATASET_WRITES": {
299 "type": "integer",
300 "example": 0
301 },
302 "KEY_VALUE_STORE_READS": {
303 "type": "integer",
304 "example": 0
305 },
306 "KEY_VALUE_STORE_WRITES": {
307 "type": "integer",
308 "example": 1
309 },
310 "KEY_VALUE_STORE_LISTS": {
311 "type": "integer",
312 "example": 0
313 },
314 "REQUEST_QUEUE_READS": {
315 "type": "integer",
316 "example": 0
317 },
318 "REQUEST_QUEUE_WRITES": {
319 "type": "integer",
320 "example": 0
321 },
322 "DATA_TRANSFER_INTERNAL_GBYTES": {
323 "type": "integer",
324 "example": 0
325 },
326 "DATA_TRANSFER_EXTERNAL_GBYTES": {
327 "type": "integer",
328 "example": 0
329 },
330 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
331 "type": "integer",
332 "example": 0
333 },
334 "PROXY_SERPS": {
335 "type": "integer",
336 "example": 0
337 }
338 }
339 },
340 "usageTotalUsd": {
341 "type": "number",
342 "example": 0.00005
343 },
344 "usageUsd": {
345 "type": "object",
346 "properties": {
347 "ACTOR_COMPUTE_UNITS": {
348 "type": "integer",
349 "example": 0
350 },
351 "DATASET_READS": {
352 "type": "integer",
353 "example": 0
354 },
355 "DATASET_WRITES": {
356 "type": "integer",
357 "example": 0
358 },
359 "KEY_VALUE_STORE_READS": {
360 "type": "integer",
361 "example": 0
362 },
363 "KEY_VALUE_STORE_WRITES": {
364 "type": "number",
365 "example": 0.00005
366 },
367 "KEY_VALUE_STORE_LISTS": {
368 "type": "integer",
369 "example": 0
370 },
371 "REQUEST_QUEUE_READS": {
372 "type": "integer",
373 "example": 0
374 },
375 "REQUEST_QUEUE_WRITES": {
376 "type": "integer",
377 "example": 0
378 },
379 "DATA_TRANSFER_INTERNAL_GBYTES": {
380 "type": "integer",
381 "example": 0
382 },
383 "DATA_TRANSFER_EXTERNAL_GBYTES": {
384 "type": "integer",
385 "example": 0
386 },
387 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
388 "type": "integer",
389 "example": 0
390 },
391 "PROXY_SERPS": {
392 "type": "integer",
393 "example": 0
394 }
395 }
396 }
397 }
398 }
399 }
400 }
401 }
402 }
403}
Phishing Email Detector AI Agent OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Phishing Email Detector AI Agent from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Pricing
Pricing model
Pay per eventThis Actor is paid per event. You are not charged for the Apify platform usage, but only a fixed price for specific events.
Actor start per 1 GB
$0.005
Flat fee for starting an Actor run for each 1 GB of memory.
Price per 100 OpenAI tokens for gpt-4o
$0.001
Flat fee for each 100 gpt-4o tokens used.
Price per 100 OpenAI tokens for gpt-4o-mini
$0.00025
Flat fee for each 100 gpt-4o-mini tokens used.