
Linkedin Posts Scraper (users,groups,schools) ✅ No cookies ✅
Pricing
$25.00/month + usage

Linkedin Posts Scraper (users,groups,schools) ✅ No cookies ✅
LinkedIn Timelines Posts Scraper Scrape LinkedIn timeline posts from users, groups, showcase pages, and schools quickly and efficiently. This actor extracts detailed post data, including content, timestamps, engagement metrics (likes, comments, shares), and media (images, videos, links).
2.9 (2)
Pricing
$25.00/month + usage
0
Monthly users
16
Runs succeeded
3.8%
Response time
17 hours
Last modified
9 days ago
You can access the Linkedin Posts Scraper (users,groups,schools) ✅ No cookies ✅ programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "CL2veRdDtMTLnS0Yu"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/scraping_solutions~linkedin-posts-scraper-users-groups-schools-no-cookies/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-scraping_solutions-linkedin-posts-scraper-users-groups-schools-no-cookies",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/scraping_solutions~linkedin-posts-scraper-users-groups-schools-no-cookies/runs": {
50 "post": {
51 "operationId": "runs-sync-scraping_solutions-linkedin-posts-scraper-users-groups-schools-no-cookies",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/scraping_solutions~linkedin-posts-scraper-users-groups-schools-no-cookies/run-sync": {
93 "post": {
94 "operationId": "run-sync-scraping_solutions-linkedin-posts-scraper-users-groups-schools-no-cookies",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "username",
135 "start",
136 "iterations",
137 "type"
138 ],
139 "properties": {
140 "username": {
141 "title": "Username or ID of the account",
142 "type": "string",
143 "description": "Provide the LinkedIn username or ID of the user, group, company, showcase, or school whose timeline you want to scrape. Example formats: 'company-name', 'group-name', or numerical ID."
144 },
145 "start": {
146 "title": "start page",
147 "minimum": 1,
148 "type": "integer",
149 "description": "sum start+ respond['count'] for the next page",
150 "default": 0
151 },
152 "iterations": {
153 "title": "number pages to scraping",
154 "minimum": 1,
155 "maximum": 10,
156 "type": "integer",
157 "description": "number of pages for scraping, 1-10 are the allowed values",
158 "default": 1
159 },
160 "type": {
161 "title": "Type of Timeline user/company/group/showcase/school",
162 "type": "string",
163 "description": "Specifies the type of LinkedIn timeline to scrape. Options are: 'user', 'company', 'group', 'showcase', or 'school'."
164 }
165 }
166 },
167 "runsResponseSchema": {
168 "type": "object",
169 "properties": {
170 "data": {
171 "type": "object",
172 "properties": {
173 "id": {
174 "type": "string"
175 },
176 "actId": {
177 "type": "string"
178 },
179 "userId": {
180 "type": "string"
181 },
182 "startedAt": {
183 "type": "string",
184 "format": "date-time",
185 "example": "2025-01-08T00:00:00.000Z"
186 },
187 "finishedAt": {
188 "type": "string",
189 "format": "date-time",
190 "example": "2025-01-08T00:00:00.000Z"
191 },
192 "status": {
193 "type": "string",
194 "example": "READY"
195 },
196 "meta": {
197 "type": "object",
198 "properties": {
199 "origin": {
200 "type": "string",
201 "example": "API"
202 },
203 "userAgent": {
204 "type": "string"
205 }
206 }
207 },
208 "stats": {
209 "type": "object",
210 "properties": {
211 "inputBodyLen": {
212 "type": "integer",
213 "example": 2000
214 },
215 "rebootCount": {
216 "type": "integer",
217 "example": 0
218 },
219 "restartCount": {
220 "type": "integer",
221 "example": 0
222 },
223 "resurrectCount": {
224 "type": "integer",
225 "example": 0
226 },
227 "computeUnits": {
228 "type": "integer",
229 "example": 0
230 }
231 }
232 },
233 "options": {
234 "type": "object",
235 "properties": {
236 "build": {
237 "type": "string",
238 "example": "latest"
239 },
240 "timeoutSecs": {
241 "type": "integer",
242 "example": 300
243 },
244 "memoryMbytes": {
245 "type": "integer",
246 "example": 1024
247 },
248 "diskMbytes": {
249 "type": "integer",
250 "example": 2048
251 }
252 }
253 },
254 "buildId": {
255 "type": "string"
256 },
257 "defaultKeyValueStoreId": {
258 "type": "string"
259 },
260 "defaultDatasetId": {
261 "type": "string"
262 },
263 "defaultRequestQueueId": {
264 "type": "string"
265 },
266 "buildNumber": {
267 "type": "string",
268 "example": "1.0.0"
269 },
270 "containerUrl": {
271 "type": "string"
272 },
273 "usage": {
274 "type": "object",
275 "properties": {
276 "ACTOR_COMPUTE_UNITS": {
277 "type": "integer",
278 "example": 0
279 },
280 "DATASET_READS": {
281 "type": "integer",
282 "example": 0
283 },
284 "DATASET_WRITES": {
285 "type": "integer",
286 "example": 0
287 },
288 "KEY_VALUE_STORE_READS": {
289 "type": "integer",
290 "example": 0
291 },
292 "KEY_VALUE_STORE_WRITES": {
293 "type": "integer",
294 "example": 1
295 },
296 "KEY_VALUE_STORE_LISTS": {
297 "type": "integer",
298 "example": 0
299 },
300 "REQUEST_QUEUE_READS": {
301 "type": "integer",
302 "example": 0
303 },
304 "REQUEST_QUEUE_WRITES": {
305 "type": "integer",
306 "example": 0
307 },
308 "DATA_TRANSFER_INTERNAL_GBYTES": {
309 "type": "integer",
310 "example": 0
311 },
312 "DATA_TRANSFER_EXTERNAL_GBYTES": {
313 "type": "integer",
314 "example": 0
315 },
316 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
317 "type": "integer",
318 "example": 0
319 },
320 "PROXY_SERPS": {
321 "type": "integer",
322 "example": 0
323 }
324 }
325 },
326 "usageTotalUsd": {
327 "type": "number",
328 "example": 0.00005
329 },
330 "usageUsd": {
331 "type": "object",
332 "properties": {
333 "ACTOR_COMPUTE_UNITS": {
334 "type": "integer",
335 "example": 0
336 },
337 "DATASET_READS": {
338 "type": "integer",
339 "example": 0
340 },
341 "DATASET_WRITES": {
342 "type": "integer",
343 "example": 0
344 },
345 "KEY_VALUE_STORE_READS": {
346 "type": "integer",
347 "example": 0
348 },
349 "KEY_VALUE_STORE_WRITES": {
350 "type": "number",
351 "example": 0.00005
352 },
353 "KEY_VALUE_STORE_LISTS": {
354 "type": "integer",
355 "example": 0
356 },
357 "REQUEST_QUEUE_READS": {
358 "type": "integer",
359 "example": 0
360 },
361 "REQUEST_QUEUE_WRITES": {
362 "type": "integer",
363 "example": 0
364 },
365 "DATA_TRANSFER_INTERNAL_GBYTES": {
366 "type": "integer",
367 "example": 0
368 },
369 "DATA_TRANSFER_EXTERNAL_GBYTES": {
370 "type": "integer",
371 "example": 0
372 },
373 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
374 "type": "integer",
375 "example": 0
376 },
377 "PROXY_SERPS": {
378 "type": "integer",
379 "example": 0
380 }
381 }
382 }
383 }
384 }
385 }
386 }
387 }
388 }
389}
Scrape LinkedIn Posts from Users, Groups No Cookies OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Linkedin Posts Scraper (users,groups,schools) ✅ No cookies ✅ from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Pricing
Pricing model
RentalTo use this Actor, you have to pay a monthly rental fee to the developer. The rent is subtracted from your prepaid usage every month after the free trial period. You also pay for the Apify platform usage.
Free trial
3 days
Price
$25.00