๐Ÿ”ฅYouTube Video Heatmap Scraper ๐Ÿ” avatar
๐Ÿ”ฅYouTube Video Heatmap Scraper ๐Ÿ”

Pricing

$5.00/month + usage

Go to Store
๐Ÿ”ฅYouTube Video Heatmap Scraper ๐Ÿ”

๐Ÿ”ฅYouTube Video Heatmap Scraper ๐Ÿ”

Developed by

Scrape Architect

Scrape Architect

Maintained by Community

๐Ÿ”ฅExtract viewer engagement hotspots from any YouTube video! ๐ŸŽฅ ๐Ÿ•’ 2.48-second segments with 0-1 intensity scores ๐ŸŒก๏ธ Spot peak moments & drop-offs instantly ๐Ÿ“ˆ Export-ready for charts, AI, or competitor analysis ๐Ÿš€ Lightning-fast scraping, no API keys needed. ๐Ÿ”ฅYouTube Video Heatmap Scraper ๐Ÿ”

0.0 (0)

Pricing

$5.00/month + usage

0

Total users

8

Monthly users

4

Runs succeeded

>99%

Last modified

2 months ago

You can access the ๐Ÿ”ฅYouTube Video Heatmap Scraper ๐Ÿ” programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, youโ€™ll need an Apify account and your API token, found in Integrations settings in Apify Console.

{
"openapi": "3.0.1",
"info": {
"version": "1.0",
"x-build-id": "Fkytm1fNC7eHicbRV"
},
"servers": [
{
"url": "https://api.apify.com/v2"
}
],
"paths": {
"/acts/scrapearchitect~youtube-video-heatmap-scraper/run-sync-get-dataset-items": {
"post": {
"operationId": "run-sync-get-dataset-items-scrapearchitect-youtube-video-heatmap-scraper",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
},
"/acts/scrapearchitect~youtube-video-heatmap-scraper/runs": {
"post": {
"operationId": "runs-sync-scrapearchitect-youtube-video-heatmap-scraper",
"x-openai-isConsequential": false,
"summary": "Executes an Actor and returns information about the initiated run in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/runsResponseSchema"
}
}
}
}
}
}
},
"/acts/scrapearchitect~youtube-video-heatmap-scraper/run-sync": {
"post": {
"operationId": "run-sync-scrapearchitect-youtube-video-heatmap-scraper",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
}
},
"components": {
"schemas": {
"inputSchema": {
"type": "object",
"required": [
"video_urls"
],
"properties": {
"video_urls": {
"title": "YouTube Video URLs",
"type": "array",
"description": "Enter one or more YouTube video URLs (for long videos, shorts, or YouTube Kids).",
"items": {
"type": "object",
"required": [
"url"
],
"properties": {
"url": {
"type": "string",
"title": "URL of a web page",
"format": "uri"
}
}
}
}
}
},
"runsResponseSchema": {
"type": "object",
"properties": {
"data": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"actId": {
"type": "string"
},
"userId": {
"type": "string"
},
"startedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"finishedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"status": {
"type": "string",
"example": "READY"
},
"meta": {
"type": "object",
"properties": {
"origin": {
"type": "string",
"example": "API"
},
"userAgent": {
"type": "string"
}
}
},
"stats": {
"type": "object",
"properties": {
"inputBodyLen": {
"type": "integer",
"example": 2000
},
"rebootCount": {
"type": "integer",
"example": 0
},
"restartCount": {
"type": "integer",
"example": 0
},
"resurrectCount": {
"type": "integer",
"example": 0
},
"computeUnits": {
"type": "integer",
"example": 0
}
}
},
"options": {
"type": "object",
"properties": {
"build": {
"type": "string",
"example": "latest"
},
"timeoutSecs": {
"type": "integer",
"example": 300
},
"memoryMbytes": {
"type": "integer",
"example": 1024
},
"diskMbytes": {
"type": "integer",
"example": 2048
}
}
},
"buildId": {
"type": "string"
},
"defaultKeyValueStoreId": {
"type": "string"
},
"defaultDatasetId": {
"type": "string"
},
"defaultRequestQueueId": {
"type": "string"
},
"buildNumber": {
"type": "string",
"example": "1.0.0"
},
"containerUrl": {
"type": "string"
},
"usage": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "integer",
"example": 1
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
},
"usageTotalUsd": {
"type": "number",
"example": 0.00005
},
"usageUsd": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "number",
"example": 0.00005
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
}
}
}
}
}
}
}
}

๐Ÿ”ฅYouTube Video Heatmap Scraper ๐Ÿ” OpenAPI definition

OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.

OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.

By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.

You can download the OpenAPI definitions for ๐Ÿ”ฅYouTube Video Heatmap Scraper ๐Ÿ” from the options below:

If youโ€™d like to learn more about how OpenAPI powers GPTs, read our blog post.

You can also check out our other API clients: