Leboncoin Scraper avatar

Leboncoin Scraper

Try Actor

$15.00/month

View all Actors
Leboncoin Scraper

Leboncoin Scraper

rigelbytes/leboncoin-scraper
Try Actor

$15.00/month

Leboncoin Scraper: Extract thousands of real estate listings with your own proxies, no extra fees. Customize filters for phone numbers and listing count, and get detailed info on prices, descriptions, and images—ideal for real estate analysis!

Leboncoin Listing Scraper

This Leboncoin Listing Scraper is designed to help you scrape thousands of real estate listings from the popular French website Leboncoin using your own proxies. By specifying a proxy, you can scrape listings without any extra charges. Extract detailed data such as prices, descriptions, and location details, all based on customizable input parameters.

📝 Copy for Use:

1{
2  "starturl": "https://www.leboncoin.fr/recherche?category=9&real_estate_type=2&immo_sell_type=old",
3  "proxy": "Proxy URL",
4  "has_phone": true,
5  "listing_count": 100
6}

Features

  • Scrapes real estate listings from Leboncoin based on a start URL.
  • Proxy field is required to ensure anonymous and unrestricted scraping.
  • Optional filter to only scrape listings that include a phone number.
  • Specify the number of listings to extract, allowing you to scrape thousands.
  • Outputs scraped data into a structured JSON dataset.

How It Works

This actor accepts user-defined inputs via an input schema and produces structured output that can be used for data analysis, automation, or real estate insights.

Input

The actor accepts the following input:

  • starturl (string, required): The starting URL for the search on Leboncoin. This is the URL from which the actor will begin scraping listings.

  • proxy (string, required): The proxy to use for scraping. Ensure this field is correctly set up to avoid limitations.

  • has_phone (boolean, optional): A flag to filter listings that include a phone number. If set to true, only listings with phone numbers will be included. Default is false.

  • listing_count (integer, required): Specifies the number of listings to extract. The actor will stop scraping once it has extracted the specified number of listings.

Copy URL

  • Select the Real-Estate category from the menu. Select Real-Estate

  • Apply your desired filters (e.g., price range, surface area). Apply Desired Filter

  • Copy the URL from your browser’s address bar after applying the filters. Copy URL

  • Paste this URL into the scraper to begin extracting listings based on your criteria.

  • Shifter

    • Reliable residential proxies all over the world.
    • Cheap rates
    • Order Shifter Now
    • Get 10% Off any product, use coupan rigelbytes-YoBB.
  • Exclusive Deals: Some providers may offer special discounts or bonuses when you use our link.
  • Support Our Work: Each purchase helps us maintain and improve the tools and services we provide.
  • No Extra Cost: You pay the same price, but part of it goes to supporting our efforts.

Usage

Running via Apify Console

You can run this actor from the Apify Console by providing the necessary input parameters.

Running via API

You can trigger this actor using the Apify API, passing the required input in the request body.

Python

1from apify_client import ApifyClient
2
3# Initialize the ApifyClient with your API token
4client = ApifyClient("<YOUR_API_TOKEN>")
5
6# Prepare the Actor input
7run_input = {
8    "starturl": "https://www.leboncoin.fr/recherche?category=9&real_estate_type=2&immo_sell_type=old",
9    "proxy": "Proxy URL",
10    "number_of_listings": 100,
11}
12
13# Run the Actor and wait for it to finish
14run = client.actor("rigelbytes/leboncoin-scraper").call(run_input=run_input)
15
16# Fetch and print Actor results from the run's dataset (if there are any)
17for item in client.dataset(run["defaultDatasetId"]).iterate_items():
18    print(item)

JavaScript

1import { ApifyClient } from 'apify-client';
2
3// Initialize the ApifyClient with API token
4const client = new ApifyClient({
5    token: '<YOUR_API_TOKEN>',
6});
7
8// Prepare Actor input
9const input = {
10    "starturl":"https://www.leboncoin.fr/recherche?category=9&real_estate_type=2&immo_sell_type=old",
11    "proxy":"Proxy URL",
12    "number_of_listings": 100
13};
14
15(async () => {
16    // Run the Actor and wait for it to finish
17    const run = await client.actor("rigelbytes/leboncoin-scraper").call(input);
18
19    // Fetch and print Actor results from the run's dataset (if any)
20    console.log('Results from dataset');
21    const { items } = await client.dataset(run.defaultDatasetId).listItems();
22    items.forEach((item) => {
23        console.dir(item);
24    });
25})();

Running with cURL

1# Set API token
2API_TOKEN=<YOUR_API_TOKEN>
3
4# Prepare Actor input
5cat > input.json <<'EOF'
6{
7    "starturl":"https://www.leboncoin.fr/recherche?category=9&real_estate_type=2&immo_sell_type=old",
8    "proxy": "Proxy URL",
9    "number_of_listings": 100
10}
11EOF
12
13# Run the Actor
14curl "https://api.apify.com/v2/acts/rigelbytes/leboncoin-scraper/runs?token=$API_TOKEN" \
15  -X POST \
16  -d @input.json \
17  -H 'Content-Type: application/json'

Output

1{
2  "list_id": {
3    "type": "integer",
4    "description": "Unique ID of the listing"
5  },
6  "first_publication_date": {
7    "type": "string",
8    "format": "date-time",
9    "description": "First time the listing was published"
10  },
11  "expiration_date": {
12    "type": "string",
13    "format": "date-time",
14    "description": "Expiration date of the listing"
15  },
16  "index_date": {
17    "type": "string",
18    "format": "date-time",
19    "description": "Date the listing was indexed"
20  },
21  "status": {
22    "type": "string",
23    "description": "The status of the listing (active, expired, etc.)"
24  },
25  "category_id": {
26    "type": "string",
27    "description": "ID of the listing category"
28  },
29  "category_name": {
30    "type": "string",
31    "description": "Name of the category"
32  },
33  "subject": {
34    "type": "string",
35    "description": "Title of the listing"
36  },
37  "body": {
38    "type": "string",
39    "description": "Detailed description of the listing"
40  },
41  "brand": {
42    "type": "string",
43    "description": "Brand name of the platform"
44  },
45  "ad_type": {
46    "type": "string",
47    "description": "Type of advertisement (offer, request, etc.)"
48  },
49  "url": {
50    "type": "string",
51    "format": "uri",
52    "description": "URL of the listing"
53  },
54  "price": {
55    "type": "array",
56    "items": {
57      "type": "integer"
58    },
59    "description": "Array containing the price of the listing"
60  },
61  "price_cents": {
62    "type": "integer",
63    "description": "Price of the listing in cents"
64  },
65  "images": {
66    "type": "object",
67    "properties": {
68      "thumb_url": {
69        "type": "string",
70        "format": "uri",
71        "description": "Thumbnail URL of the main image"
72      },
73      "small_url": {
74        "type": "string",
75        "format": "uri",
76        "description": "Small-sized image URL"
77      },
78      "nb_images": {
79        "type": "integer",
80        "description": "Number of images in the listing"
81      },
82      "urls": {
83        "type": "array",
84        "items": {
85          "type": "string",
86          "format": "uri"
87        },
88        "description": "Array of image URLs"
89      },
90      "urls_thumb": {
91        "type": "array",
92        "items": {
93          "type": "string",
94          "format": "uri"
95        },
96        "description": "Array of thumbnail image URLs"
97      },
98      "urls_large": {
99        "type": "array",
100        "items": {
101          "type": "string",
102          "format": "uri"
103        },
104        "description": "Array of large-sized image URLs"
105      }
106    },
107    "description": "Image information for the listing"
108  },
109  "attributes": {
110    "type": "array",
111    "items": {
112      "type": "object",
113      "properties": {
114        "key": {
115          "type": "string",
116          "description": "Attribute key"
117        },
118        "value": {
119          "type": "string",
120          "description": "Attribute value"
121        },
122        "key_label": {
123          "type": "string",
124          "description": "Human-readable label for the attribute key"
125        },
126        "value_label": {
127          "type": "string",
128          "description": "Human-readable label for the attribute value"
129        },
130        "generic": {
131          "type": "boolean",
132          "description": "Whether the attribute is generic"
133        }
134      },
135      "required": ["key", "value"]
136    },
137    "description": "Array of listing attributes"
138  },
139  "location": {
140    "type": "object",
141    "properties": {
142      "country_id": {
143        "type": "string",
144        "description": "Country code"
145      },
146      "region_id": {
147        "type": "string",
148        "description": "Region code"
149      },
150      "region_name": {
151        "type": "string",
152        "description": "Name of the region"
153      },
154      "department_id": {
155        "type": "string",
156        "description": "Department code"
157      },
158      "department_name": {
159        "type": "string",
160        "description": "Department name"
161      },
162      "city_label": {
163        "type": "string",
164        "description": "City name with zipcode"
165      },
166      "zipcode": {
167        "type": "string",
168        "description": "Postal code"
169      },
170      "lat": {
171        "type": "number",
172        "description": "Latitude of the location"
173      },
174      "lng": {
175        "type": "number",
176        "description": "Longitude of the location"
177      }
178    },
179    "description": "Geographical information of the listing"
180  },
181  "owner": {
182    "type": "object",
183    "properties": {
184      "store_id": {
185        "type": "string",
186        "description": "ID of the store"
187      },
188      "user_id": {
189        "type": "string",
190        "description": "ID of the user"
191      },
192      "name": {
193        "type": "string",
194        "description": "Owner's name"
195      }
196    },
197    "description": "Owner information"
198  },
199  "options": {
200    "type": "object",
201    "properties": {
202      "has_option": {
203        "type": "boolean",
204        "description": "Whether the listing has options"
205      },
206      "booster": {
207        "type": "boolean",
208        "description": "Whether the listing is boosted"
209      },
210      "urgent": {
211        "type": "boolean",
212        "description": "Whether the listing is urgent"
213      }
214    },
215    "description": "Options for the listing"
216  },
217  "has_phone": {
218    "type": "boolean",
219    "description": "Indicates if the listing includes a phone number"
220  }
221}

Get Started Today!

To start using the Leboncoin Listing Scraper, follow the instructions above to configure your inputs. Join the growing community of users leveraging data for insights in the real estate market!

Contact Us

Ready to unlock the power of data? Reach out to us at (contact@rigelbytes.com) or book an appointment with us to learn more about how we can help you achieve your data goals.

Developer
Maintained by Community
Actor metrics
  • 1 monthly user
  • 0 stars
  • 100.0% runs succeeded
  • Created in Oct 2024
  • Modified about 1 month ago