
Chess Puzzle Analyzer - Fetch & Analyze Lichess Puzzles via API
Pricing
$10.00 / 1,000 results

Chess Puzzle Analyzer - Fetch & Analyze Lichess Puzzles via API
Get detailed chess puzzle information instantly with this Apify actor. Enter any puzzle ID (1-4,000,000) to retrieve comprehensive statistics, moves, positions, and analysis from the rahilchess API. Perfect for chess trainers, developers, and enthusiasts looking to integrate PROJECTS
0.0 (0)
Pricing
$10.00 / 1,000 results
0
Monthly users
3
Runs succeeded
>99%
Last modified
a month ago
You can access the Chess Puzzle Analyzer - Fetch & Analyze Lichess Puzzles via API programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "XSMz82xOrTBsGUOgp"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/mrahil~chess-puzzle-analyzer---fetch-analyze-lichess-puzzles-via-api/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-mrahil-chess-puzzle-analyzer---fetch-analyze-lichess-puzzles-via-api",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/mrahil~chess-puzzle-analyzer---fetch-analyze-lichess-puzzles-via-api/runs": {
50 "post": {
51 "operationId": "runs-sync-mrahil-chess-puzzle-analyzer---fetch-analyze-lichess-puzzles-via-api",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/mrahil~chess-puzzle-analyzer---fetch-analyze-lichess-puzzles-via-api/run-sync": {
93 "post": {
94 "operationId": "run-sync-mrahil-chess-puzzle-analyzer---fetch-analyze-lichess-puzzles-via-api",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "properties": {
134 "puzzleId": {
135 "title": "Puzzle ID",
136 "minimum": 1,
137 "maximum": 4000000,
138 "type": "integer",
139 "description": "The ID of the chess puzzle to retrieve (between 1 and 4,000,000)",
140 "default": 1
141 }
142 }
143 },
144 "runsResponseSchema": {
145 "type": "object",
146 "properties": {
147 "data": {
148 "type": "object",
149 "properties": {
150 "id": {
151 "type": "string"
152 },
153 "actId": {
154 "type": "string"
155 },
156 "userId": {
157 "type": "string"
158 },
159 "startedAt": {
160 "type": "string",
161 "format": "date-time",
162 "example": "2025-01-08T00:00:00.000Z"
163 },
164 "finishedAt": {
165 "type": "string",
166 "format": "date-time",
167 "example": "2025-01-08T00:00:00.000Z"
168 },
169 "status": {
170 "type": "string",
171 "example": "READY"
172 },
173 "meta": {
174 "type": "object",
175 "properties": {
176 "origin": {
177 "type": "string",
178 "example": "API"
179 },
180 "userAgent": {
181 "type": "string"
182 }
183 }
184 },
185 "stats": {
186 "type": "object",
187 "properties": {
188 "inputBodyLen": {
189 "type": "integer",
190 "example": 2000
191 },
192 "rebootCount": {
193 "type": "integer",
194 "example": 0
195 },
196 "restartCount": {
197 "type": "integer",
198 "example": 0
199 },
200 "resurrectCount": {
201 "type": "integer",
202 "example": 0
203 },
204 "computeUnits": {
205 "type": "integer",
206 "example": 0
207 }
208 }
209 },
210 "options": {
211 "type": "object",
212 "properties": {
213 "build": {
214 "type": "string",
215 "example": "latest"
216 },
217 "timeoutSecs": {
218 "type": "integer",
219 "example": 300
220 },
221 "memoryMbytes": {
222 "type": "integer",
223 "example": 1024
224 },
225 "diskMbytes": {
226 "type": "integer",
227 "example": 2048
228 }
229 }
230 },
231 "buildId": {
232 "type": "string"
233 },
234 "defaultKeyValueStoreId": {
235 "type": "string"
236 },
237 "defaultDatasetId": {
238 "type": "string"
239 },
240 "defaultRequestQueueId": {
241 "type": "string"
242 },
243 "buildNumber": {
244 "type": "string",
245 "example": "1.0.0"
246 },
247 "containerUrl": {
248 "type": "string"
249 },
250 "usage": {
251 "type": "object",
252 "properties": {
253 "ACTOR_COMPUTE_UNITS": {
254 "type": "integer",
255 "example": 0
256 },
257 "DATASET_READS": {
258 "type": "integer",
259 "example": 0
260 },
261 "DATASET_WRITES": {
262 "type": "integer",
263 "example": 0
264 },
265 "KEY_VALUE_STORE_READS": {
266 "type": "integer",
267 "example": 0
268 },
269 "KEY_VALUE_STORE_WRITES": {
270 "type": "integer",
271 "example": 1
272 },
273 "KEY_VALUE_STORE_LISTS": {
274 "type": "integer",
275 "example": 0
276 },
277 "REQUEST_QUEUE_READS": {
278 "type": "integer",
279 "example": 0
280 },
281 "REQUEST_QUEUE_WRITES": {
282 "type": "integer",
283 "example": 0
284 },
285 "DATA_TRANSFER_INTERNAL_GBYTES": {
286 "type": "integer",
287 "example": 0
288 },
289 "DATA_TRANSFER_EXTERNAL_GBYTES": {
290 "type": "integer",
291 "example": 0
292 },
293 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
294 "type": "integer",
295 "example": 0
296 },
297 "PROXY_SERPS": {
298 "type": "integer",
299 "example": 0
300 }
301 }
302 },
303 "usageTotalUsd": {
304 "type": "number",
305 "example": 0.00005
306 },
307 "usageUsd": {
308 "type": "object",
309 "properties": {
310 "ACTOR_COMPUTE_UNITS": {
311 "type": "integer",
312 "example": 0
313 },
314 "DATASET_READS": {
315 "type": "integer",
316 "example": 0
317 },
318 "DATASET_WRITES": {
319 "type": "integer",
320 "example": 0
321 },
322 "KEY_VALUE_STORE_READS": {
323 "type": "integer",
324 "example": 0
325 },
326 "KEY_VALUE_STORE_WRITES": {
327 "type": "number",
328 "example": 0.00005
329 },
330 "KEY_VALUE_STORE_LISTS": {
331 "type": "integer",
332 "example": 0
333 },
334 "REQUEST_QUEUE_READS": {
335 "type": "integer",
336 "example": 0
337 },
338 "REQUEST_QUEUE_WRITES": {
339 "type": "integer",
340 "example": 0
341 },
342 "DATA_TRANSFER_INTERNAL_GBYTES": {
343 "type": "integer",
344 "example": 0
345 },
346 "DATA_TRANSFER_EXTERNAL_GBYTES": {
347 "type": "integer",
348 "example": 0
349 },
350 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
351 "type": "integer",
352 "example": 0
353 },
354 "PROXY_SERPS": {
355 "type": "integer",
356 "example": 0
357 }
358 }
359 }
360 }
361 }
362 }
363 }
364 }
365 }
366}
Chess Puzzle Analyzer - Fetch & Analyze Lichess Puzzles via API OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Chess Puzzle Analyzer - Fetch & Analyze Lichess Puzzles via API from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Chess Puzzle Analyzer - Fetch & Analyze Lichess Puzzles via API API in Python
Chess Puzzle Analyzer - Fetch & Analyze Lichess Puzzles via API API in JavaScript
Chess Puzzle Analyzer - Fetch & Analyze Lichess Puzzles via API API through CLI
Chess Puzzle Analyzer - Fetch & Analyze Lichess Puzzles via API API
Pricing
Pricing model
Pay per resultThis Actor is paid per result. You are not charged for the Apify platform usage, but only a fixed price for each dataset of 1,000 items in the Actor outputs.
Price per 1,000 items
$10.00