Realestate Newsletter Agent Langgraph
Pricing
Pay per event
Realestate Newsletter Agent Langgraph
An autonomous Apify actor that generates comprehensive real estate market research reports by analyzing data from multiple authoritative sources.
0.0 (0)
Pricing
Pay per event
0
Monthly users
1
Runs succeeded
74%
Last modified
11 days ago
You can access the Realestate Newsletter Agent Langgraph programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "uLEeCYu0iLK2RdFub"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/gopalakrishnan~realestate-newsletter-agent-langgraph/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-gopalakrishnan-realestate-newsletter-agent-langgraph",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/gopalakrishnan~realestate-newsletter-agent-langgraph/runs": {
50 "post": {
51 "operationId": "runs-sync-gopalakrishnan-realestate-newsletter-agent-langgraph",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/gopalakrishnan~realestate-newsletter-agent-langgraph/run-sync": {
93 "post": {
94 "operationId": "run-sync-gopalakrishnan-realestate-newsletter-agent-langgraph",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "location",
135 "openaiApiKey"
136 ],
137 "properties": {
138 "location": {
139 "title": "Location",
140 "type": "string",
141 "description": "City and State (e.g. 'San Jose, CA')"
142 },
143 "openaiApiKey": {
144 "title": "OpenAI API Key",
145 "type": "string",
146 "description": "Your OpenAI API key"
147 },
148 "debug": {
149 "title": "Debug Mode",
150 "type": "boolean",
151 "description": "Enable debug logging",
152 "default": false
153 }
154 }
155 },
156 "runsResponseSchema": {
157 "type": "object",
158 "properties": {
159 "data": {
160 "type": "object",
161 "properties": {
162 "id": {
163 "type": "string"
164 },
165 "actId": {
166 "type": "string"
167 },
168 "userId": {
169 "type": "string"
170 },
171 "startedAt": {
172 "type": "string",
173 "format": "date-time",
174 "example": "2025-01-08T00:00:00.000Z"
175 },
176 "finishedAt": {
177 "type": "string",
178 "format": "date-time",
179 "example": "2025-01-08T00:00:00.000Z"
180 },
181 "status": {
182 "type": "string",
183 "example": "READY"
184 },
185 "meta": {
186 "type": "object",
187 "properties": {
188 "origin": {
189 "type": "string",
190 "example": "API"
191 },
192 "userAgent": {
193 "type": "string"
194 }
195 }
196 },
197 "stats": {
198 "type": "object",
199 "properties": {
200 "inputBodyLen": {
201 "type": "integer",
202 "example": 2000
203 },
204 "rebootCount": {
205 "type": "integer",
206 "example": 0
207 },
208 "restartCount": {
209 "type": "integer",
210 "example": 0
211 },
212 "resurrectCount": {
213 "type": "integer",
214 "example": 0
215 },
216 "computeUnits": {
217 "type": "integer",
218 "example": 0
219 }
220 }
221 },
222 "options": {
223 "type": "object",
224 "properties": {
225 "build": {
226 "type": "string",
227 "example": "latest"
228 },
229 "timeoutSecs": {
230 "type": "integer",
231 "example": 300
232 },
233 "memoryMbytes": {
234 "type": "integer",
235 "example": 1024
236 },
237 "diskMbytes": {
238 "type": "integer",
239 "example": 2048
240 }
241 }
242 },
243 "buildId": {
244 "type": "string"
245 },
246 "defaultKeyValueStoreId": {
247 "type": "string"
248 },
249 "defaultDatasetId": {
250 "type": "string"
251 },
252 "defaultRequestQueueId": {
253 "type": "string"
254 },
255 "buildNumber": {
256 "type": "string",
257 "example": "1.0.0"
258 },
259 "containerUrl": {
260 "type": "string"
261 },
262 "usage": {
263 "type": "object",
264 "properties": {
265 "ACTOR_COMPUTE_UNITS": {
266 "type": "integer",
267 "example": 0
268 },
269 "DATASET_READS": {
270 "type": "integer",
271 "example": 0
272 },
273 "DATASET_WRITES": {
274 "type": "integer",
275 "example": 0
276 },
277 "KEY_VALUE_STORE_READS": {
278 "type": "integer",
279 "example": 0
280 },
281 "KEY_VALUE_STORE_WRITES": {
282 "type": "integer",
283 "example": 1
284 },
285 "KEY_VALUE_STORE_LISTS": {
286 "type": "integer",
287 "example": 0
288 },
289 "REQUEST_QUEUE_READS": {
290 "type": "integer",
291 "example": 0
292 },
293 "REQUEST_QUEUE_WRITES": {
294 "type": "integer",
295 "example": 0
296 },
297 "DATA_TRANSFER_INTERNAL_GBYTES": {
298 "type": "integer",
299 "example": 0
300 },
301 "DATA_TRANSFER_EXTERNAL_GBYTES": {
302 "type": "integer",
303 "example": 0
304 },
305 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
306 "type": "integer",
307 "example": 0
308 },
309 "PROXY_SERPS": {
310 "type": "integer",
311 "example": 0
312 }
313 }
314 },
315 "usageTotalUsd": {
316 "type": "number",
317 "example": 0.00005
318 },
319 "usageUsd": {
320 "type": "object",
321 "properties": {
322 "ACTOR_COMPUTE_UNITS": {
323 "type": "integer",
324 "example": 0
325 },
326 "DATASET_READS": {
327 "type": "integer",
328 "example": 0
329 },
330 "DATASET_WRITES": {
331 "type": "integer",
332 "example": 0
333 },
334 "KEY_VALUE_STORE_READS": {
335 "type": "integer",
336 "example": 0
337 },
338 "KEY_VALUE_STORE_WRITES": {
339 "type": "number",
340 "example": 0.00005
341 },
342 "KEY_VALUE_STORE_LISTS": {
343 "type": "integer",
344 "example": 0
345 },
346 "REQUEST_QUEUE_READS": {
347 "type": "integer",
348 "example": 0
349 },
350 "REQUEST_QUEUE_WRITES": {
351 "type": "integer",
352 "example": 0
353 },
354 "DATA_TRANSFER_INTERNAL_GBYTES": {
355 "type": "integer",
356 "example": 0
357 },
358 "DATA_TRANSFER_EXTERNAL_GBYTES": {
359 "type": "integer",
360 "example": 0
361 },
362 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
363 "type": "integer",
364 "example": 0
365 },
366 "PROXY_SERPS": {
367 "type": "integer",
368 "example": 0
369 }
370 }
371 }
372 }
373 }
374 }
375 }
376 }
377 }
378}
Realestate Newsletter Agent Langgraph OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Realestate Newsletter Agent Langgraph from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Pricing
Pricing model
Pay per eventThis Actor is paid per result. You are not charged for the Apify platform usage, but only a fixed price for each dataset of 1,000 items in the Actor outputs.
Search Initialization
$0.020
Charged when a new market search is initiated for a location
URL Processing
$0.020
Charged per validated URL from real estate sources (Zillow, Redfin, Realtor, Rocket)
Data Extraction
$0.020
Charged per source when market data is successfully extracted from the webpage
Market Analysis
$0.020
Charged per source when market data is successfully analyzed and validated
Newsletter Generation
$0.500
Charged for generating the final market analysis newsletter with compiled insights