LLM Dataset Processor avatar

LLM Dataset Processor

Try for free

No credit card required

Go to Store
LLM Dataset Processor

LLM Dataset Processor

dusan.vystrcil/llm-dataset-processor
Try for free

No credit card required

Allows you to process output of other actors or stored dataset with single LLM prompt. It's useful if you need to enrich data, summarize content, extract specific information, or manipulate data in a structured way using AI.

.dockerignore

1# configurations
2.idea
3.vscode
4
5# crawlee and apify storage folders
6apify_storage
7crawlee_storage
8storage
9
10# installed files
11node_modules
12
13# git folder
14.git

.editorconfig

1root = true
2
3[*]
4indent_style = space
5indent_size = 4
6charset = utf-8
7trim_trailing_whitespace = true
8insert_final_newline = true
9end_of_line = lf

.eslintrc

1{
2    "root": true,
3    "env": {
4        "browser": true,
5        "es2020": true,
6        "node": true
7    },
8    "extends": [
9        "@apify/eslint-config-ts"
10    ],
11    "parserOptions": {
12        "project": "./tsconfig.json",
13        "ecmaVersion": 2020
14    },
15    "ignorePatterns": [
16        "node_modules",
17        "dist",
18        "**/*.d.ts"
19    ]
20}

.gitignore

1# This file tells Git which files shouldn't be added to source control
2
3.DS_Store
4.idea
5.vscode
6dist
7node_modules
8apify_storage
9storage
10.env
11
12# Added by Apify CLI
13.venv

CHANGELOG.md

1### 0.0.23 (2025-01-07)
2- Updated readme
3- Minor fixes for better readability

package.json

1{
2	"name": "LLMDatasetTest",
3	"version": "0.0.1",
4	"type": "module",
5	"description": "This is a boilerplate of an Apify actor.",
6	"engines": {
7		"node": ">=18.0.0"
8	},
9	"dependencies": {
10		"@anthropic-ai/sdk": "^0.32.1",
11		"@google/generative-ai": "^0.21.0",
12		"apify": "^3.2.6",
13		"crawlee": "^3.11.5",
14		"openai": "^4.76.0"
15	},
16	"devDependencies": {
17		"@apify/eslint-config-ts": "^0.3.0",
18		"@apify/tsconfig": "^0.1.0",
19		"@typescript-eslint/eslint-plugin": "^7.18.0",
20		"@typescript-eslint/parser": "^7.18.0",
21		"eslint": "^8.50.0",
22		"tsx": "^4.6.2",
23		"typescript": "^5.3.3"
24	},
25	"scripts": {
26		"start": "npm run start:dev",
27		"start:prod": "node dist/main.js",
28		"start:dev": "tsx src/main.ts",
29		"build": "tsc",
30		"lint": "eslint ./src --ext .ts",
31		"lint:fix": "eslint ./src --ext .ts --fix",
32		"test": "echo \"Error: oops, the actor has no tests yet, sad!\" && exit 1"
33	},
34	"author": "It's not you it's me",
35	"license": "ISC"
36}

tsconfig.json

1{
2    "extends": "@apify/tsconfig",
3    "compilerOptions": {
4        "module": "NodeNext",
5        "moduleResolution": "NodeNext",
6        "target": "ES2022",
7        "outDir": "dist",
8        "noUnusedLocals": false,
9        "skipLibCheck": true,
10        "lib": ["DOM"]
11    },
12    "include": [
13        "./src/**/*"
14    ]
15}

.actor/Dockerfile

1# Specify the base Docker image. You can read more about
2# the available images at https://crawlee.dev/docs/guides/docker-images
3# You can also use any other image from Docker Hub.
4FROM apify/actor-node:20 AS builder
5
6# Check preinstalled packages
7RUN npm ls crawlee apify puppeteer playwright
8
9# Copy just package.json and package-lock.json
10# to speed up the build using Docker layer cache.
11COPY package*.json ./
12
13# Install all dependencies. Don't audit to speed up the installation.
14RUN npm install --include=dev --audit=false
15
16# Next, copy the source files using the user set
17# in the base image.
18COPY . ./
19
20# Install all dependencies and build the project.
21# Don't audit to speed up the installation.
22RUN npm run build
23
24# Create final image
25FROM apify/actor-node:20
26
27# Check preinstalled packages
28RUN npm ls crawlee apify puppeteer playwright
29
30# Copy just package.json and package-lock.json
31# to speed up the build using Docker layer cache.
32COPY package*.json ./
33
34# Install NPM packages, skip optional and development dependencies to
35# keep the image small. Avoid logging too much and print the dependency
36# tree for debugging
37RUN npm --quiet set progress=false \
38    && npm install --omit=dev --omit=optional \
39    && echo "Installed NPM packages:" \
40    && (npm list --omit=dev --all || true) \
41    && echo "Node.js version:" \
42    && node --version \
43    && echo "NPM version:" \
44    && npm --version \
45    && rm -r ~/.npm
46
47# Copy built JS files from builder image
48COPY --from=builder /usr/src/app/dist ./dist
49
50# Next, copy the remaining files and directories with the source code.
51# Since we do this after NPM install, quick build will be really fast
52# for most source file changes.
53COPY . ./
54
55
56# Run the image.
57CMD npm run start:prod --silent

.actor/actor.json

1{
2	"actorSpecification": 1,
3	"name": "llm-dataset-processor",
4	"title": "LLM Dataset Processor",
5	"description": "Process or enrich datasets with LLM-generated content.",
6	"version": "0.0",
7	"meta": {
8		"templateId": "ts-crawlee-cheerio"
9	},
10	"input": "./input_schema.json",
11	"dockerfile": "./Dockerfile"
12}

.actor/input_schema.json

1{
2    "title": "LLM Dataset Processor",
3    "description": "Choose specific dataset to process, select LLM, provide API token and craft your prompt template. We recommend testing your prompt first by enabling `Test Prompt Mode`. ",
4    "type": "object",
5    "schemaVersion": 1,
6    "required": [
7        "llmProviderApiKey",
8        "prompt",
9        "model",
10        "temperature",
11        "maxTokens"
12    ],
13    "properties": {
14        "inputDatasetId": {
15            "type": "string",
16            "title": "Input Dataset ID",
17            "description": "The ID of the dataset to process.",
18            "resourceType": "dataset"
19        },
20        "model": {
21            "type": "string",
22            "title": "Large Language Model",
23            "description": "The LLM to use for processing. Each model has different capabilities and pricing. GPT-4o-mini and Claude 3.5 Haiku are recommended for cost-effective processing, while models like Claude 3 Opus or GPT-4o offer higher quality but at a higher cost.",
24            "editor": "select",
25            "enumTitles": ["GPT-4o mini (Recommended)", "GPT-4o", "Claude 3.5 Haiku (Recommended)", "Claude 3.5 Sonnet", "Claude 3 Opus", "Gemini 1.5 Flash", "Gemini 1.5 Flash-8B (Recommended)" ,"Gemini 1.5 Pro"],
26            "enum": ["gpt-4o-mini", "gpt-4o", "claude-3-5-haiku-latest", "claude-3-5-sonnet-latest", "claude-3-opus-latest", "gemini-1.5-flash", "gemini-1.5-flash-8b", "gemini-1.5-pro"]
27        },
28        "llmProviderApiKey": {
29            "type": "string",
30            "title": "LLM Provider API Key",
31            "editor": "textfield",
32            "description": "Your API key for the LLM Provider (e.g., OpenAI).",
33            "isSecret": true
34        },
35        "temperature": {
36            
37            "type": "string",
38            "title": "Temperature",
39            "editor": "textfield",
40            "description": "Sampling temperature for the LLM API (controls randomness). We recommend using a value closer to 0 for exact results. In case of more 'creative' results, we recommend to use a value closer to 1.",
41            "default": "0.1"
42        },
43        "multipleColumns": {
44            "type": "boolean",
45            "title": "Multiple columns in output",
46            "description": "When enabled, instructs the LLM to return responses as JSON objects, creating multiple columns in the output dataset. The columns need to be named and described in the prompt. If disabled, responses are stored in a single `llmresponse` column.",
47            "default": false
48            },
49        "prompt": {
50            "type": "string",
51            "title": "Prompt Template",
52            "description": "The prompt template to use for processing. You can use ${fieldName} placeholders to reference fields from the input dataset.",
53            "editor": "textarea",
54            "minLength": 1,
55            "prefill": "Summarize this text: ${text}"
56        },
57        "skipItemIfEmpty": {
58            "type": "boolean",
59            "title": "Skip item if one or more ${fields} are empty",
60            "description": "When enabled, items will be skipped if any ${field} referenced in the prompt is empty, null, undefined, or contains only whitespace. This helps prevent processing incomplete data.",
61            "default": true
62        },
63        "maxTokens": {
64            "type": "integer",
65            "title": "Max Tokens",
66            "editor": "number",
67            "description": "Maximum number of tokens in the LLM API response for each item.",
68            "default": 300
69        },
70        "testPrompt": {
71            "type": "boolean",
72            "title": "Test Prompt Mode",
73            "description": "Test mode that processes only a limited number of items (defined by `testItemsCount`). Use this to validate your prompt and configuration before running on the full dataset. We highly recommend enabling this option first to validate your prompt because of ambiguity of the LLM responses.",
74            "default": true
75        },
76        "testItemsCount": {
77            "type": "integer",
78            "title": "Test Items Count",
79            "description": "Number of items to process when `Test Prompt Mode` is enabled.",
80            "default": 3,
81            "minimum": 1
82        }
83    }
84}

src/main.ts

1// main.ts
2
3import { Actor, log } from 'apify';
4import { OpenAIProvider, AnthropicProvider, GoogleProvider, getProvider } from './providers/index.js';
5import { Input, OutputItem } from './types.js';
6
7// Rate limits for OpenAI API lowest tier
8const RATE_LIMIT_PER_MINUTE = 500;
9const REQUEST_INTERVAL_MS = Math.ceil(60000 / RATE_LIMIT_PER_MINUTE); // Interval between requests in ms
10
11await Actor.init();
12
13// Helper function to get nested field value using dot notation
14function getNestedValue(obj: any, path: string): any {
15    return path.split('.').reduce((current, key) => current && current[key], obj);
16}
17
18// Helper function to check if a value is empty
19function isEmpty(value: any): boolean {
20    if (value === undefined || value === null) return true;
21    if (typeof value === 'string') return value.trim() === '';
22    if (Array.isArray(value)) return value.length === 0;
23    if (typeof value === 'object') return Object.keys(value).length === 0;
24    return false;
25}
26
27// Helper function to check if any placeholder field is empty
28function hasEmptyFields(promptStr: string, item: OutputItem): boolean {
29    const fieldMatches = promptStr.match(/\$\{([^}]+)\}/g) || [];
30    return fieldMatches.some(match => {
31        const field = match.slice(2, -1).trim(); // Remove ${ and }
32        const value = getNestedValue(item, field);
33        return isEmpty(value);
34    });
35}
36
37// Helper function to replace field placeholders in prompt with actual values
38function replacePlaceholders(promptStr: string, item: OutputItem): string {
39    return promptStr.replace(/\$\{([^}]+)\}/g, (_match, fieldName: string) => {
40        const value = getNestedValue(item, fieldName.trim());
41        return value !== undefined ? String(value) : '';
42    });
43}
44
45async function validateInput(): Promise<{
46    inputDatasetId: string;
47    llmProviderApiKey: string;
48    prompt: string;
49    model: string;
50    temperature: string;
51    maxTokens: number;
52    skipItemIfEmpty: boolean;
53    multipleColumns: boolean;
54    testPrompt: boolean;
55    testItemsCount: number;
56}> {
57    const input = await Actor.getInput() as Input;
58    if (!input) {
59        throw new Error('No input provided. Please provide the necessary input parameters.');
60    }
61
62    const {
63        llmProviderApiKey,
64        prompt,
65        model,
66        temperature,
67        maxTokens,
68        skipItemIfEmpty,
69        multipleColumns = false,
70        testPrompt = false,
71        testItemsCount = 3,
72    } = input;
73
74    const inputDatasetId = input?.inputDatasetId || input?.payload?.resource?.defaultDatasetId;
75
76    if (!inputDatasetId) {
77        throw new Error('No inputDatasetId provided. Please provide the necessary input parameters.');
78    }
79
80    return {
81        inputDatasetId,
82        llmProviderApiKey,
83        prompt,
84        model,
85        temperature,
86        maxTokens,
87        skipItemIfEmpty: skipItemIfEmpty ?? false,
88        multipleColumns,
89        testPrompt,
90        testItemsCount,
91    };
92}
93
94async function fetchDatasetItems(inputDatasetId: string, testPrompt: boolean, testItemsCount: number): Promise<OutputItem[]> {
95    try {
96        const dataset = await Actor.apifyClient.dataset(inputDatasetId).get();
97        if (!dataset) {
98            throw new Error(`Dataset with ID ${inputDatasetId} does not exist`);
99        }
100
101        const inputDataset = await Actor.openDataset<OutputItem>(inputDatasetId);
102        const { items: fetchedItems } = await inputDataset.getData();
103        
104        if (testPrompt) {
105            const itemCount = Math.min(testItemsCount, fetchedItems.length);
106            const items = fetchedItems.slice(0, itemCount);
107            log.info(`Test mode enabled - processing ${itemCount} items out of ${fetchedItems.length}`);
108            return items;
109        }
110        
111        log.info(`Fetched ${fetchedItems.length} items from the input dataset.`);
112        return fetchedItems;
113    } catch (error) {
114        if (error instanceof Error) {
115            log.error(`Error accessing dataset: ${error.message}`);
116        } else {
117            log.error('Error accessing dataset: Unknown error occurred');
118        }
119        throw error;
120    }
121}
122
123async function processItems(
124    items: OutputItem[],
125    providers: Record<string, OpenAIProvider | AnthropicProvider | GoogleProvider>,
126    config: {
127        prompt: string;
128        model: string;
129        temperature: string;
130        maxTokens: number;
131        skipItemIfEmpty: boolean;
132        multipleColumns: boolean;
133    }
134): Promise<void> {
135    const temperatureNum = parseFloat(config.temperature);
136
137    for (let i = 0; i < items.length; i++) {
138        const item = items[i];
139
140        try {
141            if (config.skipItemIfEmpty && hasEmptyFields(config.prompt, item)) {
142                log.info(`Skipping item ${i + 1} due to empty fields`);
143                continue;
144            }
145
146            const finalPrompt = replacePlaceholders(buildFinalPrompt(config.prompt, config.multipleColumns), item);
147            log.info(`Processing item ${i + 1}/${items.length}`, { prompt: finalPrompt });
148
149            const provider = getProvider(config.model);
150            let llmresponse = await providers[provider].call(
151                finalPrompt,
152                config.model,
153                temperatureNum,
154                config.maxTokens,
155            );
156
157            log.info(`Item ${i + 1} response:`, { response: llmresponse });
158
159            await handleItemResponse(item, llmresponse, config.multipleColumns, {
160                provider,
161                model: config.model,
162                temperature: temperatureNum,
163                maxTokens: config.maxTokens,
164                providers,
165                finalPrompt,
166            });
167
168            await new Promise(resolve => setTimeout(resolve, REQUEST_INTERVAL_MS));
169        } catch (error) {
170            if (error instanceof Error) {
171                log.error(`Error processing item ${i + 1}: ${error.message}`);
172            } else {
173                log.error(`Error processing item ${i + 1}: Unknown error occurred`);
174            }
175            throw error;
176        }
177    }
178}
179
180async function handleItemResponse(
181    item: OutputItem,
182    llmresponse: string,
183    multipleColumns: boolean,
184    config: {
185        provider: string;
186        model: string;
187        temperature: number;
188        maxTokens: number;
189        providers: Record<string, OpenAIProvider | AnthropicProvider | GoogleProvider>;
190        finalPrompt: string;
191    }
192): Promise<void> {
193    if (multipleColumns) {
194        let parsedData: any;
195        let attemptsLeft = 2;
196        let currentResponse = llmresponse;
197        let success = false;
198
199        while (attemptsLeft >= 0) {
200            try {
201                parsedData = JSON.parse(currentResponse);
202                success = true;
203                break;
204            } catch (err) {
205                if (attemptsLeft > 0) {
206                    log.warning(`Failed to parse JSON. Retrying...`);
207                    const retryPrompt = `${config.finalPrompt}\n\nThe last response was not valid JSON. Please return valid JSON this time.`;
208                    currentResponse = await config.providers[config.provider].call(
209                        retryPrompt,
210                        config.model,
211                        config.temperature,
212                        config.maxTokens
213                    );
214                    attemptsLeft--;
215                } else {
216                    log.error(`Failed to parse JSON after multiple attempts. Using raw response as single column.`);
217                    break;
218                }
219            }
220        }
221
222        if (success && typeof parsedData === 'object' && parsedData !== null) {
223            const outputItem: Record<string, unknown> = { ...item };
224            for (const key of Object.keys(parsedData)) {
225                outputItem[key] = parsedData[key];
226            }
227            await Actor.pushData(outputItem);
228        } else {
229            const fallbackItem = { ...item, llmresponse: currentResponse };
230            await Actor.pushData(fallbackItem);
231        }
232    } else {
233        item.llmresponse = llmresponse;
234        await Actor.pushData(item);
235    }
236}
237
238function buildFinalPrompt(promptText: string, multipleColumns: boolean): string {
239    if (!multipleColumns) {
240        return promptText;
241    }
242
243    return `${promptText}
244
245Important: Return only a strict JSON object with the requested fields as keys. No extra text or explanations, no markdown, just JSON.`;
246}
247
248async function validateJsonFormat(testItem: OutputItem, config: {
249    providers: Record<string, OpenAIProvider | AnthropicProvider | GoogleProvider>;
250    model: string;
251    temperature: string;
252    maxTokens: number;
253    prompt: string;
254}): Promise<boolean> {
255    const provider = getProvider(config.model);
256    let finalPrompt = replacePlaceholders(buildFinalPrompt(config.prompt, true), testItem);
257
258    for (let attempt = 1; attempt <= 3; attempt++) {
259        try {
260            const testResponse = await config.providers[provider].call(
261                finalPrompt,
262                config.model,
263                parseFloat(config.temperature),
264                config.maxTokens
265            );
266            
267            // First check if we got an empty response
268            if (!testResponse) {
269                log.error('Empty response received from the API');
270                await Actor.fail('Empty response received from the API');
271                return false;
272            }
273
274            // Try parsing as JSON:
275            try {
276                JSON.parse(testResponse);
277                return true; // JSON parsed successfully
278            } catch (jsonError) {
279                if (attempt < 3) {
280                    log.warning(`JSON validation attempt ${attempt} failed. Retrying...`);
281                    log.debug('Response that failed JSON parsing:', { response: testResponse });
282                    finalPrompt = `${finalPrompt}\n\nThe last response was not valid JSON. Please return valid JSON this time.`;
283                    // Continue to next attempt
284                } else {
285                    // No attempts left
286                    log.error('JSON validation attempts exhausted. The prompt may not produce valid JSON.');
287                    log.debug('Final response that failed JSON parsing:', { response: testResponse });
288                    return false;
289                }
290            }
291        } catch (apiError: any) {
292            // Log the full error for debugging
293            log.error('API call failed:', { 
294                error: apiError.message,
295                type: apiError.type,
296                code: apiError.code,
297                param: apiError.param
298            });
299            
300            // Rethrow API errors immediately instead of retrying
301            throw apiError;
302        }
303    }
304    return false; // Ensure we always return a boolean
305}
306
307async function run(): Promise<void> {
308    try {
309        const validatedInput = await validateInput();
310
311        // Log configuration details
312        const configDetails = {
313            datasetId: validatedInput.inputDatasetId,
314            model: validatedInput.model,
315            promptTemplate: validatedInput.prompt,
316            multipleColumns: validatedInput.multipleColumns,
317        };
318        log.info('Configuration details:', configDetails);
319
320        const items = await fetchDatasetItems(
321            validatedInput.inputDatasetId,
322            validatedInput.testPrompt,
323            validatedInput.testItemsCount
324        );
325
326        const providers = {
327            openai: new OpenAIProvider(validatedInput.llmProviderApiKey),
328            anthropic: new AnthropicProvider(validatedInput.llmProviderApiKey),
329            google: new GoogleProvider(validatedInput.llmProviderApiKey),
330        };
331
332        if (items.length > 0 && validatedInput.multipleColumns) {
333            const validationResult = await validateJsonFormat(items[0], {
334                providers,
335                model: validatedInput.model,
336                temperature: validatedInput.temperature,
337                maxTokens: validatedInput.maxTokens,
338                prompt: validatedInput.prompt,
339            });
340            
341            if (!validationResult) {
342                throw new Error('Failed to produce valid JSON after multiple attempts. Please adjust your prompt or disable multiple columns.');
343            }
344        }
345
346        await processItems(items, providers, {
347            prompt: validatedInput.prompt,
348            model: validatedInput.model,
349            temperature: validatedInput.temperature,
350            maxTokens: validatedInput.maxTokens,
351            skipItemIfEmpty: validatedInput.skipItemIfEmpty,
352            multipleColumns: validatedInput.multipleColumns,
353        });
354
355        log.info('Actor finished successfully');
356        await Actor.exit();
357    } catch (error) {
358        if (error instanceof Error) {
359            log.error('Actor failed:', { error: error.message });
360            await Actor.fail(error.message);
361        } else {
362            log.error('Actor failed with unknown error');
363            await Actor.fail('Unknown error occurred');
364        }
365    }
366}
367
368await run();

src/types.ts

1export interface Input {
2    inputDatasetId: string;
3    defaultDatasetId: string;
4    llmProviderApiKey: string;
5    prompt: string;
6    model: string;
7    temperature: string;
8    maxTokens: number;
9    skipItemIfEmpty?: boolean;
10    multipleColumns?: boolean;
11    testPrompt?: boolean;
12    testItemsCount?: number;
13    payload: Payload | null;
14}
15
16export interface Payload {
17    resource: Resource;
18}
19
20export interface Resource {
21    defaultDatasetId: string;
22}
23
24export interface OutputItem extends Record<string, any> {
25    LLMResponse: string | null;
26}
27
28export interface LLMProvider {
29    call(promptText: string, model: string, temperature: number, maxTokens: number): Promise<string>;
30}

src/providers/anthropic.ts

1import Anthropic from '@anthropic-ai/sdk';
2import { LLMProvider } from '../types.js';
3
4export class AnthropicProvider implements LLMProvider {
5    private client: Anthropic;
6
7    constructor(apiKey: string) {
8        this.client = new Anthropic({ apiKey });
9    }
10
11    async call(promptText: string, model: string, temperature: number, maxTokens: number): Promise<string> {
12        const message = await this.client.messages.create({
13            model,
14            max_tokens: maxTokens,
15            temperature,
16            messages: [{ role: 'user', content: promptText }],
17        });
18        
19        if (!message.content || message.content.length === 0) {
20            return '';
21        }
22
23        const textContent = message.content.find(c => c.type === 'text');
24        return textContent?.text || '';
25    }
26}

src/providers/google.ts

1import { GoogleGenerativeAI } from '@google/generative-ai';
2import { LLMProvider } from '../types.js';
3
4export class GoogleProvider implements LLMProvider {
5    private client: GoogleGenerativeAI;
6
7    constructor(apiKey: string) {
8        this.client = new GoogleGenerativeAI(apiKey);
9    }
10
11    async call(promptText: string, model: string, temperature: number, maxTokens: number): Promise<string> {
12        const genModel = this.client.getGenerativeModel({ model });
13        
14        const result = await genModel.generateContent({
15            contents: [{ role: 'user', parts: [{ text: promptText }] }],
16            generationConfig: {
17                temperature,
18                maxOutputTokens: maxTokens,
19            },
20        });
21
22        const response = result.response;
23        return response.text();
24    }
25}

src/providers/index.ts

1export * from './openai.js';
2export * from './anthropic.js';
3export * from './google.js';
4
5export const getProvider = (model: string): 'openai' | 'anthropic' | 'google' => {
6    if (model.includes('claude-')) return 'anthropic';
7    if (model.startsWith('gemini-')) return 'google';
8    if (model.startsWith('gpt-')) return 'openai';
9    throw new Error(`Unknown model provider for model: ${model}`);
10};

src/providers/openai.ts

1import OpenAI from 'openai';
2import { LLMProvider } from '../types.js';
3
4export class OpenAIProvider implements LLMProvider {
5    private client: OpenAI;
6
7    constructor(apiKey: string) {
8        this.client = new OpenAI({ apiKey });
9    }
10
11    async call(promptText: string, model: string, temperature: number, maxTokens: number): Promise<string> {
12        const completion = await this.client.chat.completions.create({
13            messages: [{ role: 'user', content: promptText }],
14            model,
15            temperature,
16            max_tokens: maxTokens,
17        });
18        return completion.choices[0]?.message?.content || '';
19    }
20}
Developer
Maintained by Community

Actor Metrics

  • 0 monthly users

  • 1 star

  • >99% runs succeeded

  • Created in Dec 2024

  • Modified 5 days ago

Categories