
monster-scraper
Pricing
$1.00 / 1,000 results

monster-scraper
Scrape Monster.com job listings by keyword and location. Customize radius, pages, and results per page. Get detailed job data including titles, salaries, and company info in JSON. Perfect for job hunting or market research.
0.0 (0)
Pricing
$1.00 / 1,000 results
1
Monthly users
12
Runs succeeded
96%
Last modified
a month ago
You can access the monster-scraper programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "pyqfgiaFv6rfpa4Dh"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/axlymxp~monster-scraper/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-axlymxp-monster-scraper",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/axlymxp~monster-scraper/runs": {
50 "post": {
51 "operationId": "runs-sync-axlymxp-monster-scraper",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/axlymxp~monster-scraper/run-sync": {
93 "post": {
94 "operationId": "run-sync-axlymxp-monster-scraper",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "query",
135 "address"
136 ],
137 "properties": {
138 "query": {
139 "title": "Search Query",
140 "type": "string",
141 "description": "Job title or keyword to search for (e.g., 'Software Engineer', 'Python Developer').",
142 "default": "Python"
143 },
144 "address": {
145 "title": "Location",
146 "type": "string",
147 "description": "City or address to search around (e.g., 'San Francisco, CA', 'New York, NY').",
148 "default": "New York, NY"
149 },
150 "radius": {
151 "title": "Search Radius (miles)",
152 "minimum": 1,
153 "maximum": 100,
154 "type": "integer",
155 "description": "Radius around the location in miles. Larger values return more results.",
156 "default": 20
157 },
158 "country": {
159 "title": "Country Code",
160 "type": "string",
161 "description": "Two-letter country code (e.g., 'US' for United States).",
162 "default": "US"
163 },
164 "startPage": {
165 "title": "Start Page",
166 "minimum": 1,
167 "type": "integer",
168 "description": "Page number to start scraping from (e.g., 1 for the first page).",
169 "default": 1
170 },
171 "maxPages": {
172 "title": "Max Pages",
173 "minimum": 1,
174 "maximum": 10,
175 "type": "integer",
176 "description": "Number of pages to scrape (ignored if scrapeAllPages is true). Max 10 to avoid timeouts.",
177 "default": 1
178 },
179 "pageSize": {
180 "title": "Jobs per Page",
181 "minimum": 1,
182 "maximum": 50,
183 "type": "integer",
184 "description": "Number of jobs per page. Higher values fetch more per request (max 50).",
185 "default": 20
186 },
187 "scrapeAllPages": {
188 "title": "Scrape All Pages",
189 "type": "boolean",
190 "description": "If true, scrape all available pages (up to 10) instead of using maxPages.",
191 "default": false
192 }
193 }
194 },
195 "runsResponseSchema": {
196 "type": "object",
197 "properties": {
198 "data": {
199 "type": "object",
200 "properties": {
201 "id": {
202 "type": "string"
203 },
204 "actId": {
205 "type": "string"
206 },
207 "userId": {
208 "type": "string"
209 },
210 "startedAt": {
211 "type": "string",
212 "format": "date-time",
213 "example": "2025-01-08T00:00:00.000Z"
214 },
215 "finishedAt": {
216 "type": "string",
217 "format": "date-time",
218 "example": "2025-01-08T00:00:00.000Z"
219 },
220 "status": {
221 "type": "string",
222 "example": "READY"
223 },
224 "meta": {
225 "type": "object",
226 "properties": {
227 "origin": {
228 "type": "string",
229 "example": "API"
230 },
231 "userAgent": {
232 "type": "string"
233 }
234 }
235 },
236 "stats": {
237 "type": "object",
238 "properties": {
239 "inputBodyLen": {
240 "type": "integer",
241 "example": 2000
242 },
243 "rebootCount": {
244 "type": "integer",
245 "example": 0
246 },
247 "restartCount": {
248 "type": "integer",
249 "example": 0
250 },
251 "resurrectCount": {
252 "type": "integer",
253 "example": 0
254 },
255 "computeUnits": {
256 "type": "integer",
257 "example": 0
258 }
259 }
260 },
261 "options": {
262 "type": "object",
263 "properties": {
264 "build": {
265 "type": "string",
266 "example": "latest"
267 },
268 "timeoutSecs": {
269 "type": "integer",
270 "example": 300
271 },
272 "memoryMbytes": {
273 "type": "integer",
274 "example": 1024
275 },
276 "diskMbytes": {
277 "type": "integer",
278 "example": 2048
279 }
280 }
281 },
282 "buildId": {
283 "type": "string"
284 },
285 "defaultKeyValueStoreId": {
286 "type": "string"
287 },
288 "defaultDatasetId": {
289 "type": "string"
290 },
291 "defaultRequestQueueId": {
292 "type": "string"
293 },
294 "buildNumber": {
295 "type": "string",
296 "example": "1.0.0"
297 },
298 "containerUrl": {
299 "type": "string"
300 },
301 "usage": {
302 "type": "object",
303 "properties": {
304 "ACTOR_COMPUTE_UNITS": {
305 "type": "integer",
306 "example": 0
307 },
308 "DATASET_READS": {
309 "type": "integer",
310 "example": 0
311 },
312 "DATASET_WRITES": {
313 "type": "integer",
314 "example": 0
315 },
316 "KEY_VALUE_STORE_READS": {
317 "type": "integer",
318 "example": 0
319 },
320 "KEY_VALUE_STORE_WRITES": {
321 "type": "integer",
322 "example": 1
323 },
324 "KEY_VALUE_STORE_LISTS": {
325 "type": "integer",
326 "example": 0
327 },
328 "REQUEST_QUEUE_READS": {
329 "type": "integer",
330 "example": 0
331 },
332 "REQUEST_QUEUE_WRITES": {
333 "type": "integer",
334 "example": 0
335 },
336 "DATA_TRANSFER_INTERNAL_GBYTES": {
337 "type": "integer",
338 "example": 0
339 },
340 "DATA_TRANSFER_EXTERNAL_GBYTES": {
341 "type": "integer",
342 "example": 0
343 },
344 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
345 "type": "integer",
346 "example": 0
347 },
348 "PROXY_SERPS": {
349 "type": "integer",
350 "example": 0
351 }
352 }
353 },
354 "usageTotalUsd": {
355 "type": "number",
356 "example": 0.00005
357 },
358 "usageUsd": {
359 "type": "object",
360 "properties": {
361 "ACTOR_COMPUTE_UNITS": {
362 "type": "integer",
363 "example": 0
364 },
365 "DATASET_READS": {
366 "type": "integer",
367 "example": 0
368 },
369 "DATASET_WRITES": {
370 "type": "integer",
371 "example": 0
372 },
373 "KEY_VALUE_STORE_READS": {
374 "type": "integer",
375 "example": 0
376 },
377 "KEY_VALUE_STORE_WRITES": {
378 "type": "number",
379 "example": 0.00005
380 },
381 "KEY_VALUE_STORE_LISTS": {
382 "type": "integer",
383 "example": 0
384 },
385 "REQUEST_QUEUE_READS": {
386 "type": "integer",
387 "example": 0
388 },
389 "REQUEST_QUEUE_WRITES": {
390 "type": "integer",
391 "example": 0
392 },
393 "DATA_TRANSFER_INTERNAL_GBYTES": {
394 "type": "integer",
395 "example": 0
396 },
397 "DATA_TRANSFER_EXTERNAL_GBYTES": {
398 "type": "integer",
399 "example": 0
400 },
401 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
402 "type": "integer",
403 "example": 0
404 },
405 "PROXY_SERPS": {
406 "type": "integer",
407 "example": 0
408 }
409 }
410 }
411 }
412 }
413 }
414 }
415 }
416 }
417}
monster-scraper OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for monster-scraper from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Pricing
Pricing model
Pay per resultThis Actor is paid per result. You are not charged for the Apify platform usage, but only a fixed price for each dataset of 1,000 items in the Actor outputs.
Price per 1,000 items
$1.00